Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microorganisms ; 10(8)2022 Aug 02.
Article in English | MEDLINE | ID: covidwho-1969385

ABSTRACT

The performance of diagnostic polymerase chain reaction (PCR) assays can be impacted by SARS-CoV-2 variability as this is dependent on the full complementarity between PCR primers/probes and viral target templates. Here, we investigate the genetic variability of SARS-CoV-2 regions recognized by primers/probes utilized by PCR diagnostic assays based on nucleotide mismatching analysis. We evaluated the genetic variation in the binding regions of 73 primers/probes targeting the Nucleocapsid (N, N = 36), Spike (S, N = 22), and RNA-dependent RNA-polymerase/Helicase (RdRp/Hel, N = 15) of the publicly available PCR-based assays. Over 4.9 million high-quality SARS-CoV-2 genome sequences were retrieved from GISAID and were divided into group-A (all except Omicron, >4.2 million) and group-B (only Omicron, >558 thousand). In group-A sequences, a large range of variability in primers/probes binding regions in most PCR assays was observed. Particularly, 87.7% (64/73) of primers/probes displayed ≥1 mismatch with their viral targets, while 8.2% (6/73) contained ≥2 mismatches and 2.7% (2/73) contained ≥3 mismatches. In group-B sequences, 32.9% (24/73) of primers/probes were characterized by ≥1 mismatch, 13.7% (10/73) by ≥2 mismatches, and 5.5% (4/73) by ≥3 mismatches. The high rate of single and multiple mismatches- found in the target regions of molecular assays used worldwide for SARS-CoV-2 diagnosis reinforces the need to optimize and constantly update these assays according to SARS-CoV-2 genetic evolution and the future emergence of novel variants.

2.
Microbiol Spectr ; 10(2): e0273221, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1769843

ABSTRACT

The process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversification is still ongoing and has very recently led to the emergence of a new variant of concern (VOC), defined as Omicron or B.1.1.529. Omicron VOC is the most divergent variant identified so far and has generated immediate concern for its potential capability to increase SARS-CoV-2 transmissibility and, more worryingly, to escape therapeutic and vaccine-induced antibodies. Nevertheless, a clear definition of the Omicron VOC mutational spectrum is still missing. Herein, we provide a comprehensive definition and functional characterization (in terms of infectivity and/or antigenicity) of mutations characterizing the Omicron VOC. In particular, 887,475 SARS-CoV-2 Omicron VOC whole-genome sequences were retrieved from the GISAID database and used to precisely define its specific patterns of mutations across the different viral proteins. In addition, the functional characterization of Omicron VOC spike mutations was finely discussed according to published manuscripts. Lastly, residues characterizing the Omicron VOC and the previous four VOCs (Alpha, Beta, Gamma, and Delta) were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, our study will assist with deciphering the Omicron VOC mutational profile and will shed more light on its clinical implications. This is critical considering that Omicron VOC is currently the predominant variant worldwide. IMPORTANCE The Omicron variant of concern (VOC) has a peculiar spectrum of mutations characterized by the acquisition of mutations or deletions rarely detected in previously identified variants, particularly in the spike glycoprotein. Such mutations, mostly residing in the receptor-binding domain, could play a pivotal role in enhancing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity (by increasing binding affinity for ACE2), jeopardizing spike recognition by therapeutic and vaccine-induced antibodies and causing diagnostic assay failure. To our knowledge, this is one of the first exhaustive descriptions of newly emerged mutations underlying the Omicron VOC and its biological and clinical implications.


Subject(s)
COVID-19 , Vaccines , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL